

Engineering Networks Breakfast

DISCLAIMER: The AGM is sponsored by CAPE member contributions.

CAPE 5th Annual Engineering Knowledge Conference: Nano to Mega: Engineering 2020

09:00 - 09:35

Conference Registration

10:00 - 10:15

Welcome Address Opening Remarks and Member Updates

10:15 - 12:30

Nano to Mega: Engineering and Convergence 2020

Our expert panel will discuss:

- Robotics: Research, Business, and Foresight
- Ontario Green Energy and Green Economy Act, the FIT Program and Renewable Electricity Production
- Energy Independence and Sustainability
- Environmental Sustainability and Management

12:30 - 13:15

Luncheon

13:15 - 14:30

Employer Networking, Recruitment and On-Boarding

- Employer/Recruiter/Sponsor booths
- One-to-one Job Finding Tips!
- e-Talent workshop: Building Competitive Workforce
 - Mobile Knowledge Platforms
 - e-Mentoring
 - HireImmigrants.ca

14:30 - 15:30

CAPE Annual General Meeting and Speaker

Open to CAPE members and the public

15:30 - 16:00

Volunteer Appreciation and Closing Remarks

WELCOME ADDRESS

CAPE

CAPE Achievements 1993-2003

Formed Informal group of engineers of 70 members

Formed a community coalition of four groups

- Engaged with PEO joint-task force to develop them provisional license
- Meetings with some stakeholders (e.g. Hyrdo1)
- Completed a strategic plan

CAPE Achievements 2003-2006

- CASSA-CAPE Engineering Access Project (\$450,000+)
 - Documented barriers to meaningful employment
 - Introduced the four-cohort model
 - Build and served membership of 965 IEBs
 - Built Database the skills/competencies of IEBs
 - 6 Multi-stakeholder roundtables to develop an integrated employment strategy "Canadian First to Canada First

CAPE Achievements 2006-2010

- Incorporated Independently
- Membership increased from 965 to 3000+
- Develop online employment support tools (Suite of 7 tools)
 - Completed Skills Commensurate Engineering Access (SCEA) project analyzed true gaps/skills - matched 1000+ IEBs with 400 + jobs (\$157,000+)
 - Completed Leveraging Global Engineering Skills (LGES) project curricula development process (\$505,000+)
- Engaged with 100+ employers
- Trained 400+ front line workers, 80+ service providers, 20+ job developers trained
- Established MPREP- Multi-Profession Roundtable on Employment and Policy (approx. 175+ members)

CAPE Achievements – By 2011

- Increase in stakeholder engagement: 400%
- Increased membership to 3500+
 - Total project funding: Over \$1.1 Million
 - Revenue generation from fee-for-service tools: \$180,000
- Raised approx. \$335,000 in-kind contributions of services/ volunteer hours
- Served/counseled approx. 550 people individually
- Put 30+ people on the path to sustainable employment through CAPE activities

Our current state

- Innovative technologies that have changed the face of service delivery, policy discussions and perception of strength of the organization
 - CAPE developed flexible, adaptable organizational structure based on five core pillars:
 - Membership
 - Employment
 - Knowledge mobilization
 - Community collaboration
 - Advocacy

CAPE's Prospects

- CAPE's mission expansion, title change
- Organizational structure development
- Sustainability enhancement
- Milestone IMG Navigator Project with MTCU
- Profound shift to advocacy:
- Embracing legal Advice on Advocacy

Petition to Government of Canada

The Government of Canada must ensure:

• The constituent elements of the twelve months Canadian experience requirement are clearly and publicly documented.

• An arms' length appeal process is introduced into the licensing process to ensure the rights of individuals to seek justice, as their constitutional rights, against accepted documented criteria.

• The governance of the regulated professions does not restrict competition and is aligned with the requirements laid out in free trade agreements (NAFTA and GATTS) that Canada has signed to reduce and/or eliminate discrimination in licensing processes, and ensure these are fair, objective, transparent, and no more burdensome than necessary.

CAPE is Proud to Thank you

- Thanking our sponsors
- Thanking our outgoing members
 - Thanking our activists

 Thanking all our loyal members for the support and active contribution to the case of recognition and establishment of foreign trained professionals in Canada

Opening Remarks: Regulation under the 3rd Convergence

Dr. Gurmeet Bambrah, Chief Operating Officer, CAPE

ICT – The First Digital Convergence

- Before 1970 Communications technology was built for telephony, telegraphy, and broadcasting.
- Between 1975-1995 computing and communications converged producing mass digitization - information entered cyberspace
- 1995-2005 Information and Communications technology converged producing ICT frontier
 - ICT is the use of computers to upload, convert, store, protect, transmit, process, and securely retrieve data

The Second Convergence- Nano to Mega

- 1990s Digital systems started removing technological and disciplinary boundaries in 1990s
 - emergence of biotechnology, nanotechnology and systems thinking
- 2005 Charles West Professor Emeritus, MIT argued two frontiers were emerging in Engineering
 - The Bio-Nano-Info Frontier smaller and smaller spatial scales and faster and faster time scales
 - The Mega Systems Frontier of larger and larger global systems of great complexity
- January 2011 Dr. Abdul Kalam that another frontier is emerging in engineering
 - As globally demand is shifting to technologically and environmentally superior and sustainable systems
 - Bio-Nano-Info-Eco the new 21st Century Frontier calling for innovative knowledge platforms

NBIC – Third Convergence 2020

- NBIC acronym for Nanotechnology, Biotechnology, Information Technology and Cognitive Science
- NBIC convergence is a bioscience industry
 - Based on radically new abilities to manipulate matter at the atomic and nano levels.
 - Driving human progress in powerful ways.
 - This triad of technologies is expected to provide unprecedented benefits and solutions to the future grand challenges facing humanity ranging from sustainable health care and energy independence to food, water and climate.

NBIC is becoming the blueprint for innovation

Convergence and Engineering

- First Convergence 1990s ICT became an integral part of all engineering activities
- Second Convergence 2000s The 21st century knowledge society, where science and environment got together created Bio-Nano-Info-Eco Frontier and Mega systems Frontiers in engineering
 - Third Convergence 2010s NBIC leading to
 - "...emergence of new kinds of people who understand multiple fields in depth and intelligently work to integrate them,"
 Bainbridge of US National Science Foundation
 - Requires highly interdisciplinary teams characterized by broad intellectual span rather than focused practice within the narrow traditional engineering disciplines. James J. Duderstadt, President Emeritus, University of Michigan argues

Diverging Public Requirements

Regulation and

Convergence

Fading disciplinary and professional boundaries Bio-Nano-Info-Eco - cognitive science

self governing and highly protective

Collaborative , innovative and flexible Institutional Structure s

Rigid (inflexible) Institutional Structures focus licensing for control of practitioners

Non-profession specific but ethical Regulation

More and more narrowly defined engineering disciplines and tasks

Expert Panel 1

Nano to Mega: Engineering and Convergence 2020

Robotics: Research, Business, and Foresight

Dr. Andrew Goldenberg

Ontario Green Energy and Green Economy Act, the FIT Program and Renewable Electricity Production, Dr. Michael Dang, Hydro One

Energy Independence and sustainability,

Dr. Sergy Kasyanov, Independent Consultant

Environmental Sustainability and management, Dr. Shashi Vohora, Independent Consultant

hydro

Partners in Powerful Communities

INTERSTAFF INC. Corporate sponsor, Career Opportunities and Financial Services

Robotics, Research, Business and Foresight

Dr. Andrew Goldenberg

Ontario Renewable Energy Program

Dr. Michael Dang, Hydro One

Quick Facts

- Ontario has already brought more than 1,200 MW of new renewable energy on-line since October2000
- Earlier initiatives included plans to eliminate coal from the power supply as this is the single largest source of air pollution in Ontario and eliminating it from the transmission network system will be the largest climate change initiative

The Green Energy Act

Ontario's Green Energy Act (GEA) received the Royal Assent on May 14, 2009. Regulations and other tools needed to fully implement the legislation were introduced through the month of September 2009. The landmark in Green Energy Act:

- Boost investment in renewable energy projects and increase conservation
- Spark growth in clean and renewable sources of energy such as wind, solar, hydro, biomass and biogas in Ontario

 Create the potential for savings and better managed household energy expenditures through a series of conservation measures

• Create green jobs and economic growth to Ontario.

Ontario's Electricity Market (Continued)

Ontario's Electricity Market (Continued)

Ontario Energy Board regulates Ontario's electricity industry Local Distribution Companies provide electricity to local customers Private generators provide electricity production

Ontario's Electricity Market (Continued)

The Network System Transmission **Stations** 281 Transmission Lines 500kV - 3784km 230kV - 13824km 115kV - 10953km **Distribution Lines** 123,000 km Underground Cable 230kV - 45km 115kV - 220km Customers **1.2 Million Customers** Large Industrials - 113 Local Distributors -92 Generators 174 (includes 78 OPG) 2011 Peak Demand 27,005 MW

Electricity System Overview

Greene Energy Contracts

Dell'anna ha Data and Taska al an Tana (an ODA Manana d Osarta ata							
Delivery by Date and Technology Type for OPA Managed Contracts							
		Prior	2011 Planned	2012 Planned	2013 Planned	2014 Planned	Total
Ť		4507.4		107.0	1000.1	200	1017.5
	Wind	1527.1	833.4	497.6	1089.4	300	4247.5
	Hydroelectric	28.2		14	507.3	54.85	604.35
\otimes	Biomass, Landfill and Industrial By- Product Gas	55.3	15	17.8			88.1
۵	Natural Gas	4153.9		673			4826.9
*	Bruce Refurbishment			1500			1500
	Total	5764.5	848.4	2702.4	1596.7	354.85	11,266.85

- Wind Potential Southern Georgian Bay (Owen Sound, Collingwood) Bruce Peninsula North (tip of Lake Huron and Georgian Bay) • Lake Huron shore (Goderich, Port Albert, Kingcardine, Douglas
- Point, Port Elgin) South shore on Lake Erie (Leamington, Port Stanley, Port Burwell,
- East of Nanticoke to Port Coleborne) Prince Edward County Southeastern area • Manitoulin Island

FIT Prices for Renewable Energy Projects in Ontario

	Feed-in Tariff Prices			
	August 13, 2010			
Renewable Fuel	Size Transaction	Contract Price Cents/kWh		
Biomass	<u><</u> 10 MW	13.8		
	>10 MW	13.0		
Biogas				
 On-Farm 	<u><</u> 100 kW	19.5		
 On-Farm 	> 100 kW ≤ 250 kW	18.5		
 Biogas 	<u>≤</u> 500 kW	16.0		
 Biogas 	>500 kW ≤ 10 MW	14.7		
 Biogas 	> 10 MW	10.4		
Landfill Gas	<_10 MW	11.1		
	>10 MW	10.3		
Waterpower	<u><</u> 10 MW	13.1		
	> 10 MW ≤ 50 MW	12.2		
Solar PV				
 Rooftop 	<u>< 10 kW</u>	80.2		
 Rooftop 	> 10 kW ≤ 250 kW	71.3		
 Rooftop 	> 250 kW ≤ 500 kW	63.5		
 Rooftop 	> 500 kW	53.9		
 Ground 	<u><</u> 10 kW	64.2		
Mounted				
 Ground 	> 10 kW <u><</u> 10 MW	44.3		
Mounted				
Wind				
 Onshore 	Any size	13.5		
 Offshore 	Any size	19.0		
	· · ·			

FIT Prices for Renewable Energy Projects in Ontario (Cont...)

Feed-in Tariff Price to be Added to Aboriginal and Community Projects											
Cents/kWh											
Renewable Fuel	Wind	PV	Water	Biogas	Biomass	Landfill					
		(Grd Mt)				Gas					
Max Price to be added to Aboriginal Projects	15	15	0.9	0.6	0.6	0.6					
Max Price to be added to Community Projects	1.0	1.0	0.6	0.4	0.4	0.4					
Projects											

The GTAA cogeneration plant near the Toronto airport is the first natural gasfired facility under contract with the OPA placed in commercial operation. The project consists of two GE LM6000 combustion turbine generator sets.

A bird's eye view of the 99 MW Erie Shores Wind Farm at Port Burwell. The project, which was developed by Erie Shores Wind Farm LP and placed in commercial operation in May 2006, is comprised of 66 GE wind turbines.

Other than wind and hydroelectric, there are three biomass and landfill gas projects that contribute 9.1 MW of the renewable energy supply capacity to the Ontario electricity system. As of the end of January 2007, all of these contracts have been placed in commercial operation.

This 2.8 MW biomass generating facility located in Guelph was placed in commercial operation in August 2005. The project was developed by Ecotricity Hydro Inc., a subsidiary of Guelph Hydro Inc. It is the first OPA electricity supply contract that achieved commercial operation. This facility uses three Caterpillar Model G3516 SITA spark-ignited, low-emission engines.

This 1.6 MW digester gas generating facility in Hamilton is the smallest OPA-contracted facility. The project, which was placed in commercial operation in July 2006, was developed by Hamilton Renewable Power Inc., a subsidiary of the City of Hamilton.

The world's largest photovoltaic facility in the world in Sarnia. Enbridge's 80 MW solar farm consists of 1.3 million solar modules across 943,000 square meters

The Ontario microFIT solar program allows Ontarian to install a solar PV Array of 10KW or less. Under the program you are paid a guaranteed ¢80.2/kWh for a system mounted on an existing roof. This is over a 20-year term to the province's electricity grid.

10 kW Ground-mounted solar panels showing single-axis azimuth tracker designed to boost output by up to 25% by following the sun from east to west over the course of the day. Under the FIT program you are guaranteed ¢64.2/kWh over a 20-year period.

BRICS – Energy Independence and Sustainability (BRIC vs G6)

Dr. Sergy Kasyanov, Independent Consultant

GLOBAL ENERGY MARKETS

Term "BRIC" was introduced by Goldman Sachs for Brazil, Russia, India and China, developing/ transitioning countries, which were projected to drive global economic growth. At the opposite side we have G6 group of the most developed countries: United States, Japan, Germany, France, UK and Italy. Will BRIC outpace G6??

Proved oil reserves, billions of barrels

Oil production and consumption

BRIC countries have by far larger proved oil reserves over G6 (115 and 35 billions barrels respectively) as well as larger scope of production.

But G6 bloc traditionally has much larger consumption of it.

Oil consumption

(thousand barrels per day)

Natural gas reserves are dominated by Russia, but G6 is winning in its production and consumption

Non-fossil sources of energy

Fossil fuels are not environmentally friendly, finite and will be exhausted within several generations. Therefore renewable energy becomes the bare necessity for the sustainable development of mankind:

- Hydroelectricity production must be reconciled with environmental and agricultural challenges
- Nuclear energy should become increasingly safe
- Production of biofuels must be dramatically increased
- Windmills, geothermal, sea-, sunpower and other renewable energy supplies should become more efficient and popular.

Environmental Sustainability and Management

Dr. Shashi Vohora, Independent Consultant

SUSTAINABILITY

Impact of the revolution

a revolution in the making

Important Revolutions

• Agricultural Revolution notable
Industrial Revolution
Manufacturing Revolution
Transportation Revolution
Standardization Revolution
Quality Revolution recent
• IT Revolution
•Globalization Revolution
Automation Revolution

what do we mean by SUSTAINABILITY

In everyday English sustain, means "to maintain", "to support", or

"to endure".

SUSTAINABILITY REVOLUTION

likely to be as or more significant than the Quality Revolution

Revolutions + Revolutions

- Agricultural Revolution
- Industrial Revolution
- Manufacturing Revolution
- Transportation Revolution
- Standardization Revolution
- Quality Revolution
- IT Revolution
- Globalization Revolution
- Automation Revolution

Quality Revolution

Product Reliability

particularly for consumers

Quality and Sustainability

Quality satisfies practical needs

Sustainability satisfies emotional needs

Both based on Continuous Improvement Cycle

Benefits of Sustainability

Containment of

depletion

degradation

destruction

Importance of being SUSTAINABLE

customers expect it

public authorities demand it

Sustainability is important along the entire continuum from nano to mega technology.

SUSTAINABILITY IN PRACTICE

activity

Environmental Management

Managing the environmental impacts of industrial and other activities.

A way to attain sustainability is to adopt the practice of environmental management

There has to be a standard for environmental management - which is – ISO 14001

ISO 14001 is the international standard for environmental impacts of an activity.

The objective is to manage the environmental footprint of industrial activity.

ISO 14001 can be regarded as the Holy Grail of environmental management.

A number of tools and approaches have been developed to achieve ISO 14001.

Environmental Management Systems (EMS) is one such approach.

Environmental Management Systems

An Environmental Management System (EMS) is a systematic tool or framework to manage environmental impacts.

An EMS helps to integrate environmental issues and responsibilities into the day to day activities of an organization

my personal Involvement

Examples of EMS in New Zealand

- The Natural Step
- ISO14001
- Enviro-mark
- Green Globe
- Target sustainability
- ECAN Pollution prevention Guide
- EWOF

Why do firms get involved in environmental management

From my experience in NZ businesses start an EMS because

- Customer requirement (contract)
- Firms want to reduce operational impacts which also reduced costs
- Firms want to streamline manufacturing process and reduce raw materials and waste
- Firms want to minimize risk (prosecution and reputational risk)
- Marketing

Evaluation of a selected EMS in real-life application

(involved 3 parts)-based on comparative research and case studies

Firstly I compared EMS operation in Britain with New Zealand. This allowed me to gather information on critical factors for EMS

This was followed by

- Inter-sector comparisons (New Zealand)
- Inter-firm comparisons (plastics industry in New Zealand)
- case studies in selected firms

Critical Success Factors identified

- EMS product and other tools
- Regulations and Compliance
- Trained manpower
- Govt incentives
- Support (govt agencies +industry)

Inter-Sector Comparisons

Within NZ comparing the plastics sector with non-plastic sectors suggested that facilitation is of crucial importance

Why plastics?

Inter-Firm Comparisons

Firms within the plastics industry had different needs. This required the development of different responses to address firm-specific needs.

Facilitation has to be customized to specific needs of firms.

FACILITATION

Making easier or less difficult or more

achievable

METHODOLOGY

A methodology was developed to achieve sustainability targets.

- Developed from real-life experience
- Action Research
- Operations Research
SIX SIGMA

NZ Experience – methodology to systemize facilitation

The methodology employs the Six Sigma approach to allow reliable predictability and therefore better decision making and planning.

Six Sigma is a proven method for planning and implementing action to address shortfalls in organizational targets

ISO 14001 in Canada:

- Canada has 1,206 of the 88,800 ISO14001 certifications worldwide (as at April 2005)
- Ranked 12th in the world for uptake in 2005 and has grown from 34th in 1999 (Japan, China and Spain are the top 3 ranked).
- There is huge potential as there are 1,000,000 small businesses in Canada alone (as at 2010) which have fewer than 100 employees that would find ISO 14001 too complex.

Luncheon & Speaker

Employer Networking, recruitment and on-boarding

Mobile Knowledge Platforms

Satraj Bambra, Fusion Mobile

eMentoring

Rashid Osman, Skills for Change

Hirelmmigrants.ca,

Munira Ravji, Marketing and Partnership Specialist ALLIES, MAYTREE

WELCOME!

Mentoring for Change

Presenter: Rashid Osman

Skills for Change

Vision: We envision a Canada where every immigrant succeeds

Mission: We provide learning and training opportunities for immigrants and refugees to access and fully participate in the workplace and wider community

Mentoring for Change

- Matches Internationally trained professionals with established Canadian
- Offers mentoring for:
 - Employment
 - Language
 - Settlement
 - Professional development

Brief History of SfC Mentoring

- In 1992 we pioneered Mentoring Service for Internationally Trained Professionals
- Average of 250 mentoring matches per year
- □ Train the trainer programs/Consultancy
 - Brampton Library
 - City of Toronto
 - Ryerson University (Consultancy)
 - Toronto and Region Conservation Authority

Program Eligibility Criteria

Mentors

- Have 2 + years of professional experience
- Understand Canadian workplace culture
- Understand challenges faced by immigrants
- Identify skills required to meet market demands
- Understand job search strategies
- Willing to devote 24 hrs for up to 4 months to assist mentee

Modes of Mentoring

- Face to Face
 - Direct meeting between mentor and mentee at a convenient location
- **D** E-Mentoring
 - Use of technology to exchange information during the mentoring process

What is e-Mentoring

- The use of Internet Technology to facilitate a mentoring relationship
- □ Internet Technology:
 - E-mail
 - Instant Messenger
 - Skype
 - Box Net
 - Join me
 - Other technology

Why e-Mentoring

- Mentees and Mentors are at considerable geographic distance from Skills for Change or from each other
- Mentors have relocated to other cities and provinces
- Mentees are busy with survival jobs
- Mentors are busy with their jobs and cannot meet face to face on a regular basis
- Mentees are employed and need assistance during probationary period

Skills for Change e-Mentoring

Secured website

- Discussion Board
- Email sent directly to mentoring connections
- Monitoring of goals
- Sharing of documents such as a resume or a cover letter
- Participate in mentee forum or mentor forum
- Upload articles

Demonstration of e-Mentoring

Mentoring is a brain to pick, an ear to listen, and a push in the right direction..

THANK YOU!

The best gift that one can give, that cannot be retrieved, is the gift of time. We value your time!

CAPE

Sponsor Appreciation

Suite 850-36 Toronto Street, Toronto, Ontario, M5C 2C5 Canada Tel: (416) 955-0563 Fax: (416) 360-3838 Web: www.capeinfo.ca